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Genetic Algorithm Trajectory Optimizer for
Unmanned Air Vehicle Obstacle Avoidance and

Path Planning
Andrew Torgesen

Abstract—Path planning and obstacle avoidance given a set of
waypoints is an important and common problem for autonomous,
unmanned air vehicles. There is a large field of research dedicated
to solving the problem of efficiently navigating an obstacle field
to arrive at a specified location, with wide-ranging algorithmic
solutions. This project aims to solve the problem for a small,
fixed-wing unmanned air vehicle by formulating the problem as
an a-priori optimal control problem and optimizing over possible
trajectories using a Genetic Algorithm. The Genetic Algorithm
is found to perform well when the closed-loop dynamics of the
unmanned air vehicle are approximated by second-order differ-
ential equations and the trajectory optimization is formulated as
a single-shooting (as opposed to a direct collocation) problem.

I. SUMMARY OF FINDINGS

The goal of this project was to use a genetic algorithm
to find a trajectory for an unmanned aerial vehicle (UAV) to
take the UAV from the initial position

[
pn,i pe,i pd,i

]T
in the North-East-Down inertial coordinate frame (pd cor-
responds to negative altitude, h) to a desired final position[
pn,f pe,f pd,f

]T
. The trajectory needed to honor the dy-

namic constraints of the UAV (not commanding paths that
were impossible to complete) and also avoid static, spherical
obstacles in the region.

I transcribed the trajectory optimization problem using the
single shooting method, with a genetic algorithm population
size of 1000 candidate designs. It was found that the genetic
algorithm is able to overcome some fundamental weaknesses
of the single shooting method if the population size is large
enough.

Table I gives all major parameter values for the genetic
algorithm.

Table I: Major parameter values for the genetic algorithm.

Number of time discretization points (N ) 30
Population size (P ) 1000

Stagnant generation limit 10
Tournament size 10

Crossover probability 80%
Mutation probability 20%

Crossover parameter (η) 0.5
Mutation parameter (β) 0.01

Total mutation generations (M ) 700

To test the genetic algorithm optimizer, I ran 50 tests
with randomized initial and final trajectory points, as well as
randomly placed spherical obtacles with random radii. The
average optimizer outputs are given in table II.
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Figure 1: Fitness versus generation number for the best and
average design in each generation.

Table II: Average optimizer output values over 50 randomized
trials.

Generations 733
Best Fitness 79.27

Average Fitness 1562
Computation Time 2 minutes

Figure 1 gives the fitness versus generation evolution of the
design, comparing the best fitness with the average fitness in
the generation. Various output trajectories are shown in the
Results section.

II. PROCEDURE

To perform this optimization, I developed a simplified
model of a fixed-wing unmanned air vehicle (UAV) with a
feedback controller for tracking commanded course angles
and altitudes, and also developed a potential field model for
spherical obstacles. I did research into practical numerical
methods for optimal control and experimented with them
to determine the best method for turning my path planning
problem into an optimization problem. Once the optimization
problem was formulated, I designed a genetic algorithm with
specific methods for selection, crossover, mutation, and elitism
to find a locally optimal trajectory that both took the UAV to
the desired location in three-dimensional space and avoided
randomly-placed obstacles. The following sections describe
the process in detail.
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Figure 2: State-space model of UAV dynamics with input u
for commanding course angle and altitude and output ẋ for
evolving the state variable values.

A. Model of UAV Dynamics and Environment

Because I wanted to formulate the path planning and
obstacle avoidance problem as an optimal control problem,
I needed to develop a state-space model of the dynamics of
the UAV, as depicted in figure 2:

Given this model, an optimization problem could be for-
mulated for calculating the optimal inputs to the system u(t)
and system states x(t) to traverse from an initial state xi to
a commanded final state xf , minimizing some cost function
related to control effort and obstacle avoidance.

As is common in path planning scenarios, I decided to
derive a simplified model of the closed-loop feedback system
dynamics of the UAV. Since I would not assume constant
altitude flight, I needed to model both the lateral and longitu-
dinal dynamics of the aircraft. In Small Unmanned Aircraft:
Theory and Practice by Randal Beard and Timothy McLain,
the transfer function of the lateral autopilot of a UAV (which
attempts to track a commanded course angle) is given in figure
3, and the transfer function of the longitudinal autopilot (which
attempts to track a commanded altitude) is given in figure 4.

Figure 3: Transfer function of the lateral autopilot of a UAV.
The input to the feedback loop is the commanded course angle
χC , and the output is the actual course angle χ, where the
course angle is defined as the counter-clockwise angle from
north.

Figure 4: Transfer function of the longitudinal autopilot of a
UAV. The input to the feedback loop is the commanded altitude
hC , and the output is the actual altitude h.

Implicit in this model is the assumption that lateral and
longitudinal dynamics can be decoupled and linearized ade-
quately about a nominal state. Simulating the step response
of the full lateral and longitudinal autopilots using Matlab’s

lsim function, I used a least squares fitting tool to find two
simplified second-order transfer functions, Tlat and Tlon, of
the form:

Tlat =
bχ

s2 + bχ̇s+ bχ
, Tlon =

bh
s2 + bḣs+ bh

(1)

The comparison between the step responses of the full
feedback loop models and the simplified models are shown
in figures 5 and 6.

Figure 5: Comparison of the step response of the full lateral
autopilot model (depicted in blue) and the simplified lateral
model Tlat (depicted in red).

Figure 6: Comparison of the step response of the full longi-
tudinal autopilot model (depicted in blue) and the simplified
longitudinal model Tlon (depicted in red).

Using the derived models for Tlat and Tlon, and constructing
a system state vector consisting of UAV north position pn, east
position pe, course angle χ, time derivative of course angle χ̇,
altitude h (where h = −pd), and time derivative of altitude ḣ,
I developed the following state-space model for the dynamics
of the UAV:

ẋ =



ṗn
ṗe
χ̇
χ̈

ḣ

ḧ

 =



Va cosχ
Va sinχ

χ̇
−bχ̇χ̇+ bχ(χC − χ)

ḣ

−bḣḣ+ bh(hC − h)

 = f(x, u) (2)

where u is the input vector to the system, consisting of a
commanded course angle χC , a commanded altitude hC , and
a commanded airspeed Va.

I also required a mathematical model for spherical obstacles
so that proximity of the UAV to obstacles could be quantified
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(and penalized) by an objective function. I chose to model
spherical obstacles at position (xobs, yobs, zobs) with radius
robs using a gaussian droplet function in three variables
(x, y, z):

Ω(x, y, z) = A exp(− B

r2obs
((x−xobs)2+(y−yobs)2+(z−zobs)2))

(3)
where A and B are scaling factors. Given equation 3, an

obstacle potential field can be calculated from the gradient:

∇Ω(x, y, z) = −2BΩ(x, y, z)

x− xobsy − yobs
z − zobs

 (4)

Using equation 2, the design variables, or the inputs to the
UAV system from figure 2, can be transformed into a UAV
trajectory in three-dimensional space that can be penalized
according to the dot product of the trajectory velocity and the
obstacle field as described by equation 4.

B. Optimization Problem Formulation

1) Transcription Method: The process of “transcribing”
a trajectory optimization or optimal control problem into a
pure optimization problem is an area of much interest, and
I had to decide between different methods for doing so.
The first method I considered and tested for formulating the
optimization problem is known in the literature as direct
collocation. With direct collocation, the trajectory problem
is discretized in time with k = 1, 2, . . . , N , and the design
variables are both the system inputs uk and the system states
xk at each discretized time step k. At first, this may seem
counter-intuitive, since figure 2 and equation 2 demonstrate
that the evolution of xk can be calculated deterministically
with a given uk. Indeed, the deterministic relationship between
uk and xk must be enforced by creating equality constraints
(known as “defect constraints”) that set the simulated states
x̂k from a given set uk equal to xk.

While this may seem like extra work for the optimizer, direct
collocation has its advantages. One of the main advantages is
that optimizing over states in addition to inputs allows for
the easy implementation of path constraints, such as ensuring
that the final state xN coincides with the desired final state in
the trajectory, and not a random point in the configuration
space. For this reason, direct collocation is popular when
used with gradient-based optimizers that depend on an initial
guess for the design variables. However, when I formulated
the optimization problem with direct collocation, the design
space proved too large for my genetic algorithm to converge
in a timely manner. Discretizing my trajectory problem with
N = 10 time steps resulted in a design variable vector with
121 elements, and the optimizer would not converge on a
solution after one hour of running.

I considered an alternative to direct collocation known as
single shooting. With single shooting, the trajectory problem
is once again discretized in time, but this time the design vari-
ables are just the system inputs uk. This method is analogous
to aiming and shooting a cannon (hence the name), where uk

is chosen without any path constraints as a guide, and the
system is simulated forward in time to obtain xk. Because the
design space is so large, it is clear that the single shooting
method suffers without a good initial guess when using a
gradient-based optimizer. However, I suspected that using a
genetic algorithm optimizer might allow me to overcome this
weakness due to its sampling of the entire design space from
the outset. This method proves effective when paired with a
genetic algorithm for trajectory optimization, as is detailed in
the rest of this report.

2) Fitness/Objective Function and Constraints: Using the
single shooting transcription method, I required an objective
function which penalized the following characteristics of a
candidate design variable vector u:

• Error between the final simulated trajectory state xN ,
simulated with fourth-order Runge Kutta (RK4), and the
desired final state xf,desired.

• Large jumps between the values of uk and uk+1.
• Proximity to obstacles.

To penalize these three things, I designed the following
objective function:

Algorithm 1 Compute the fitness of a candidate design.

Input Candidate design u =
[
u1 u2 . . . uN

]
Output Scalar cost value; large value = poor fitness

1: for k = 1, . . . , N do
2: Derive xk =

[
pn pe χ χ̇ h ḣ

]
using uk, equa-

tion 2, and RK4
3: Final state error xf,e = norm(xN − xf,desired)
4: Calculate obstacle field gradient

[
fx fy fz

]
=

∇Ω(xk)
5: Directional derivative of trajectory in obstacle field
s = 1/(1 + ḣ2)

[
cosχ sinχ 1

] [
fx fy fz

]T
6: cost + = w1 ∗ s2 + w2∗diff(u)2 + w3 ∗ xf,e
7: check for violated constraints and add segregation term

to cost if violated
8: end for

To clarify the segregation term statement in the algorithm,
the algorithm checks to see if one of the constraints from
equation 6 is violated, then adds a large term (I used 200) to
the fitness to reflect the undesirability of constraint violation.

3) Design Variables and Constraints: With single shooting,
I packed the commanded course angle χC (in radians) at each
time step k, commanded altitude hC at each time step (in
meters), and the commanded airspeed Va (in meters/second)
into a single design input vector u with 2N + 1 elements:

u =
[
u1 u2 . . . uN

]
(5)

=
[
χC,1 . . . χC,N hC,1 . . . hC,N Va

]
As suggested by equation 5, a single commanded airspeed

value is chosen over the entire trajectory. The χC,k values de-
termine the UAV lateral trajectory, the hC,k values determine
the UAV longitudinal trajectory, and the Va value determines
the length of the overall trajectory over the specified time
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interval. To test the functionality of the genetic algorithm, I
determined that hC,k and Va must take on integer values.

Additionally, I placed constraints on the values of u to avoid
commanding erratic flight paths:

 −3π/2
min(hi, hf )− 20

15

 ≤
χC,khC,k
Va

 ≤
 3π/2

max(hi, hf ) + 20
25


(6)

C. Genetic Algorithm Design

Equation 5 defines the design representation for the genetic
algorithm, with the exception that the fitness value is also
appended to u within the algorithm. At the start of the opti-
mization, an initial population is created by evenly distributing
the population across the feasible space defined by equation 6.
To create an effective genetic algorithm, I implemented the fol-
lowing methods for selection, crossover, mutation, and elitism.
These methods encourage fitness pressure, inheritance, and
diversity, which make genetic algorithms far more effective
than ad hoc sampling algorithms.

• Selection: I chose the tournament method to carry out
selection of parents, with a tournament size of 10. The
order of the population is shuffled randomly, and random
indices are then used to pair two members of the popula-
tion together, selecting the one with the better fitness.
With a tournament size of 10, the fitness pressure is
relatively small relative to the large size of the population
(10/1000). I found this to not pose an issue, however,
as the results demonstrate that the overall fitness of the
population improves quite rapidly over the course of 30
generations or so.

• Crossover: Once two parents are selected to create
children, my algorithm uses a semi-blended crossover
technique, which comes from setting the crossover η
parameter value to 0.5, as explained in the course notes.
I did this to allow for more variation in the inherited
values given from the parents to the children, while
still anchoring the values somewhat to the values of
the parents. My thought was that partially anchoring the
values of the children to the values of the parents would
help prevent infeasible trajectories from being generated
from feasible trajectories.

• Mutation: I valued the ability of mutation to help a
child design improve over either of its parent designs
and introduce diversity in the population. However, I was
also aware that a high mutation probability could negate
the effects of crossover. I settled on the highest mutation
probability I felt I could get away with, which was 20%.
I elected to implement dynamic mutation, which begins
with uniform mutation, then favors mutation values near
the current gene as the number of generations increases.
Running the optimization many times and seeing an
average generation number of around 700, I set M , the
total generation number for the mutation calculation, to
700, and the mutation parameter β to 0.01 to make the
dynamic mutation effect small.

• Elitism: After all children for the next generation have
been created and mutated, the children are combined with
all parents from the previous generation, and only the top
half of the population (as sorted by fitness value) survives
for the next generation.

One key design decision was that instead of specifying a set
number of generations for which to carry out the simulation, I
found that I achieved the best overall output trajectories in the
timeliest manner possible if I instead made the algorithm stop
after a certain number of stagnant generations, or generations
for which the best fitness did not improve. I settled on a
stagnant generation limit of 10, which seemed to give a nice
tradeoff between output desirability and computation time.

D. Empirical Testing for Determining Optimal Parameters

It would not be inaccurate to state that at least half of
my development time was spent attempting to find the best
parameters for transcription, the cost function, and the genetic
algorithm to obtain a desirable trafeoff between trajectory
accuracy, feasibility, and computation time. The majority of
my parameter determination efforts went to the following
parameters:

• Number of trajectory time discretization points (N ):
The solve time for the genetic algorithm increases ex-
ponentially as a function of this parameter. The time
range for the simulation is 0 ≤ t ≤ 10s, so I initially
chose N = 10, corresponding to a time step value of
one second. This resulted in a decision vector size of 21
and a solve time of ≈ 10 seconds. However, the result-
ing trajectory path often included jagged edges, which
indicates that the time discretization was not fine enough
to adequately incorporate the dynamic constraints of the
UAV. I kept increasing N until the output trajectories
were always smooth for randomized trials. I eventually
settled on N = 30, which resulted in a solve time of ≈ 2
minutes.

• Genetic algorithm population size (P ): This was the
second most important parameter for solve time after
N . That being said, solve time seemed to increase more
closely to a linear rate with respect to P , and increasing
this parameter tended to allow shorter overall paths
to emerge as a locally optimum solution. I settled on
P = 1000.

• Cost function weights (w1, w2, w3): The relative values
of these weights determine how the optimizer prioritizes
avoiding obtacles versus minimizing input variation ver-
sus minimizing the error between the final point in the
trajectory and the desired final position, xf,e. Through ex-
perimentation, I found that the obstacle avoidance weight
w1 needed to be much greater than the other two weights,
or the resulting trajectories would liberally run right
through obstacles. I found that the input variation weight
w2 could be composed into two separate weights for
commanded course angle and commanded altitude, with
the commanded course angle weight being greater than
the commanded altitude weight. Finally, the final position
error weight w3 needed to be greater than the largest w2
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weight. I arrived at w1 = 200, w2 =
[
1.0 0.5

]
, w3 =

2.0, which gave desirable trajectory outputs.

III. RESULTS

To test the genetic algorithm optimizer, I ran 50 tests
with randomized initial and final trajectory points, as well as
randomly placed spherical obtacles with random radii. The
average optimizer outputs are given in table III.

Table III: Average optimizer output values over 50 randomized
trials.

Generations 733
Best Fitness 79.27

Average Fitness 1562
Computation Time 2 minutes

Figure 7 gives the fitness versus generation evolution of the
design, comparing the best fitness with the average fitness in
the generation. The overall fitness of the population improves
drastically within the first 30 generations or so, then the
average fitness levels off as the best fitness slowly improves
over the next hundreds of generations. Another interesting fact
to note from the figure is that there is an immense disparity
between the best and average fitness in each generation.
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Figure 7: Fitness versus generation number for the best and
average design in each generation.

With the proper parameters discussed in the previous sec-
tion, the genetic algorithm demonstrates the ability to generate
UAV trajectories that arrive at the desired final position, avoid
obstacles, and conform to the dynamic constraints of the
aircraft. Figures 8-10 show some sample output trajectories
over the 50 randomized trials.

Of 50 randomized trials, the generated trajectory ended
within one meter of the final desired position all 50 times.
This is remarkable, considering the fact that single shooting
is known to have trouble generating trajectories that conform
to path constraints without a well-chosen initial guess. Of
all trials, the generated trajectory crossed through a random
obstacle 4 times, giving an obstacle avoidance success rate of
92%. Finally, of all trials, the generated trajectory conformed

Figure 8: Genetic Algorithm output UAV trajectory for ran-
domized trial #5.

Figure 9: Genetic algorithm output UAV trajectory for ran-
domized trial #20.
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Figure 10: Genetic algorithm output UAV trajectory for ran-
domized trial #41.

to the dynamic constraints of the UAV all 50 times. It should
also be noted that the constraints on the design variables were
at times binding, but never violated in the final designs.

IV. DISCUSSION

Figure 7 demonstrates that after a relatively small number
of generations, the disparity between the fittest design and the
population at large becomes huge, and the average fitness of
the population grows stagnant as the fitness of the best design
steadily improves over many future generations. This pattern
seems to suggest that the algorithm would benefit greatly from
resampling, in which only a top percentage of the population
is allowed to continue on and “reproduce.” Other algorithms,
such as the particle filter, utilize some form of resampling,
and it often leads to much faster computation times. Thus,
resampling may allow for still greater initial population sizes,
which would lead to even better-conditioned final trajectories
without the associated huge computational costs. The steady
decrease in the objective value across generations also suggests
that the chosen genetic algorithm parameters are adequate.

The sample output trajectories demonstrate a few heartening
characteristics of the optimizer. Perhaps the most striking
observation is that the genetic algorithm appears to have no
problem converging to a trajectory that arrives at the final
desired position xf , despite the fact that single shooting
transcriptions for optimization problems tend to struggle to ac-
complish this. This counterintuitive result is probably a result

of how the genetic algorithm initializes candidate designs by
uniformly distributing the initial population across the design
space. Thus, the genetic algorithm doesn’t fall victim to the
same dependence on an initial design guess that gradient-based
methods tend to share.

Figure 10 clearly demonstrates the ability of the optimizer
to explore all of the dimensions of the configuration space,
and the jump from 2D to 3D path planning under this scheme
is trivial, unlike with other path planning schemes such as the
Rapidly Exploring Random Tree method. Moreover, the ability
of the optimizer to repeatedly simulate the UAV system using
RK4 integration ensures that the resulting trajectory is feasible
for a UAV to fly, as long as time is discretized in a sufficiently
fine manner. It should be noted, however, that the output
trajectories tend to have many turns, resulting in relatively
convoluted paths. There are a couple of possible remedies for
this. Perhaps the optimization space could be limited to regions
where clusters of obstacles are present, favoring straight-line
paths outside of these regions. Additionally, the cost function
could penalize the length of the output trajectory, possibly by
penalizing the commanded airspeed value.

One final observation gained from this project is that the
successful execution of the optimizer requires the tuning of
many different parameters having to do with the objective
function, the transcription, and the genetic algorithm itself. It
can be easy to get lost in all of the parameters, spending a lot
of time trying to obtain the ideal tradeoff between competing
algorithm requirements and objectives. A possible help on this
front may come from formulating the trajectory optimization
as a two-objective problem, splitting obstacle avoidance and
input smoothness/xf error into two different objectives. This
would entail the use of a Pareto front, and would allow for
more explicitly playing with the tradeoffs between a desirable
trajectory shape and the distance from obstacles.

Genetic algorithms are known to be extremely versatile
in their ability to tackle a wide array of complex optimiza-
tion problems. This is further confirmed by the success of
the genetic algorithm in solving the trajectory optimization
problem with such a high degree of accuracy. The main
drawback of these algorithms observed in this project is the
steep tradeoff between performance and computation time. An
average of two minutes for computing a trajectory flown in ten
seconds makes genetic algorithms considerably slower than
other trajectory optimization methods. However, as discussed
above, there are possible remedies to this long computation
time, and it is likely that genetic algorithms will continue to be
widely used for similar applications, especially as processors
improve and algorithmic innovation persists.
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